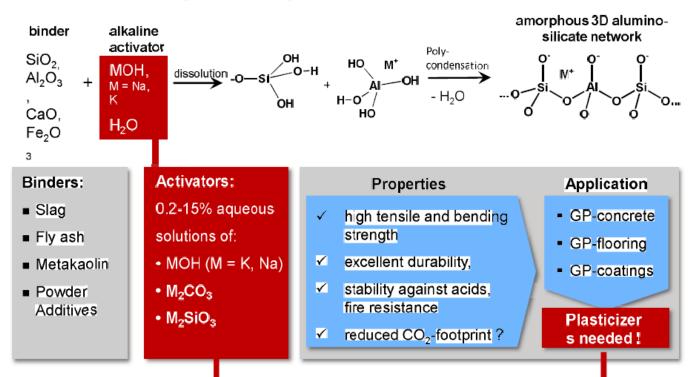


Geopolymer concrete


Miles Dacre - 12 July 2024

What is geopolymer concrete and why use it?

Geopolymer Basic Overview Polycondensation vs hydration

Geopolymer: Polycondensation

OPC: Hydration

Tricalcium aluminate + gypsum + water \rightarrow ettringite + heat $C_3A + 3C\underline{S}H_2 + 26H \rightarrow C_6AS_3H_{32}$, $\Delta H = 207$ cal/g

Tricalcium silicate + water \rightarrow calcium silicate hydrate + lime + heat $2C_3S + 6H \rightarrow C_2S_2H_3 + 3CH$, $\Delta H = 120$ cal/g

Tricalcium aluminate + ettringite + water \rightarrow monosulfate aluminate hydrate $2C_3A + 3 C_6A\underline{S}_3H_{32} + 22H \rightarrow 3C_4ASH_{18}$

What is geopolymer concrete?

It's an alternative cementitious material to Ordinary Portland Cement (OPC) – OPC has been around for over 100 years and is a great, robust construction material.

Heard of SCMs – Supplementary Cementitious Materials – slag, fly ash & silica fume? When we add them to OPC based concretes as a partial cement replacement we rely on the alkalinity and heat that the OPC generates to activate.

In a geopolymer concrete all the OPC (GP cement) is removed and the activation of the slag and/or fly ash is achieved via an alkali-activator. They are **starting** to be referred to Alkali Activated Materials or Concrete.

Significance – it is all about carbon emissions

- To produce 1kg of cement clinker requires the release of ~1kg of carbon dioxide
- So OPC production contributes ~8% of the world's total carbon emissions
- Geopolymer concrete is one of the few ways that we can continue to use all the great structural properties of concrete and reduce emissions
- It's been known about and used for over 25 years why aren't we using it?

Challenges

There has been some drawbacks for Geopolymer

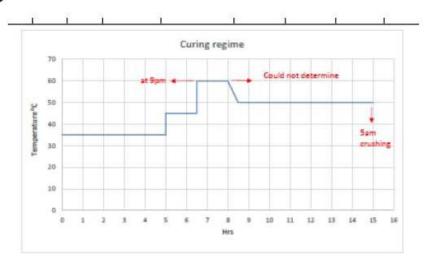
- Plasticising of geopolymer <10%</p>
- Wet out times
- Finishability
- Workability
- Slump retention
- Set times
- Efflorescence
- Strength development
- Mix robustness
- Acceptance

Precast: Geopolymer

Customer Requirements

Fresh Properties			
Flow	500 – 650		
T500	<5 s		
Retention @ 10, 20 30 mins	Similar to control		

Ambiently cured and accelerated curing.



Precast: Early age strength is critical

Geopolymers systems have traditionally struggled with HES.

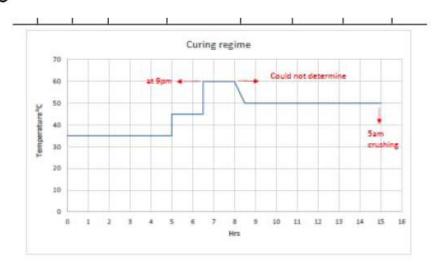
Accelerated Curing

Name	15 hours
Control 1 (0.35)	25
Geopolymer	24.5

Ambient Curing @ 23'c

Name @ 23'C	24 hours	28 hours	40 hours
Control 1 (0.35)	20	23.5	30.5
Geopolymer	18	22	27.5

Take away: Stripping strength achieved at same time as control mix



Precast: Early age strength is critical

Geopolymers systems have traditionally struggled with HES.

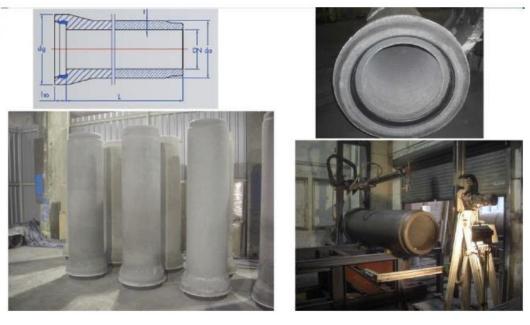
Accelerated Curing

Name	15 hours
Control 1 (0.35)	25
Geopolymer	24.5

Ambient Curing @ 23'c

Name @ 23'C	24 hours	28 hours	40 hours
Control 1 (0.35)	20	23.5	30.5
Geopolymer	18	22	27.5

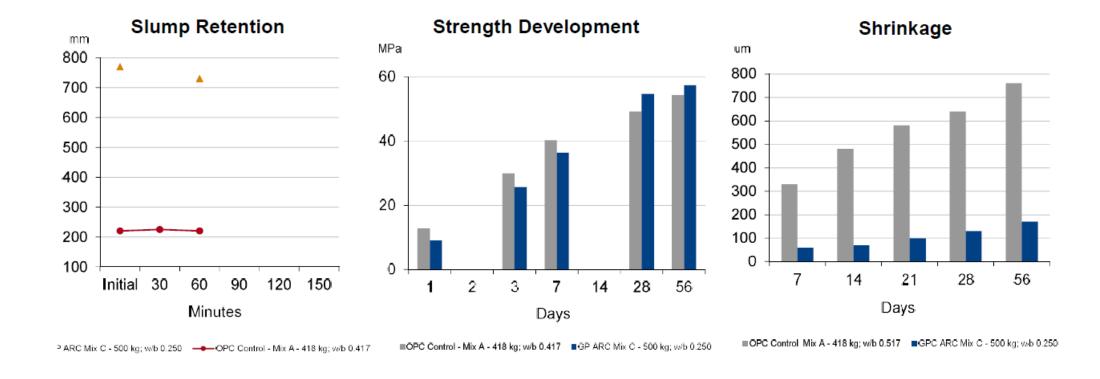
Take away: Stripping strength achieved at same time as control mix

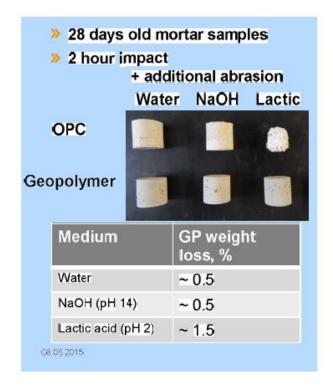


Precast: Potential applications

• Civil Precast Elements – Example Pits, barriers etc

- Railway sleepers
- Flat panel architectural precast panels
- Small elements covers etc
- Drainage pipes




ARC Performance

High performing system with improved properties

Acid Resistant Geopolymer Concrete: Performance

Concrete Testing – OPC Control vs CIP Binder; Sulfuric Acid; pH 0; Temp 22°C

Acid Resistant Geopolymer Concrete: Potential applications

- Septic Tanks
- Sewer Pipes
- TBM Segments
- Chemical Storage

Thank you.

AECOM Delivering a better world