AECOM

Low Carbon Concrete Vix Selection Eoo

Practical Implementation Guide

Yarra Valley Water, North East Water, Barwon Water 05 June 2024 – Final Version 1.0

Delivering a better world

aecom.com

Prepared for/by

Title	Low Carbon Concrete - Mix Selection Tool - Practical Implementation Guide
Client	Yarra Valley Water, North East Water, Barwon Water
Prepared by	AECOM Australia Pty Ltd Collins Square, Level 10, Tower Two, 727 Collins Street, Melbourne, VIC 3008, Australia T: 1800 868 654 www.aecom.com ABN 20 093 846 925
In Association with	N/A
Reviewed by	Miles Dacre
Ref	60730155_02
Date	05 June 2024
Certification	AECOM in Australia and New Zealand is certified to ISO9001, ISO14001 and ISO45001.

Revision history

ed
Signature
griter.

Disclaimer

AECOM Australia Pty Ltd (AECOM). All rights reserved.

AECOM has prepared this document for the sole use of the Client and for a specific purpose, each as expressly stated in the document. No other party should rely on this document without the prior written consent of AECOM. AECOM undertakes no duty, nor accepts any responsibility, to any third party who may rely upon or use this document. This document has been prepared based on the Client's description of its requirements and AECOM's experience, having regard to assumptions that AECOM can reasonably be expected to make in accordance with sound professional principles. AECOM may also have relied upon information provided by the Client and other third parties to prepare this document, some of which may not have been verified. Subject to the above conditions, this document may be transmitted, reproduced or disseminated only in its entirety.

Acknowledgment of Country

AECOM acknowledges the Traditional Custodians of country throughout Australia.

We pay our respects to both Elders past and present and to emerging community leaders. We recognise and celebrate the diversity of Aboriginal and Torres Strait Islander people and their ongoing cultures and connections to lands and waters.

Art by Bianca Gardiner Dodd

Delivering a better world

Table of Contents

- 1. Introduction
- 2. Tool overview
- 3. Input parameters
- 4. Using the Tool
- 5. Implementing the Tool
- 6. Case studies
- 7. Resources and References

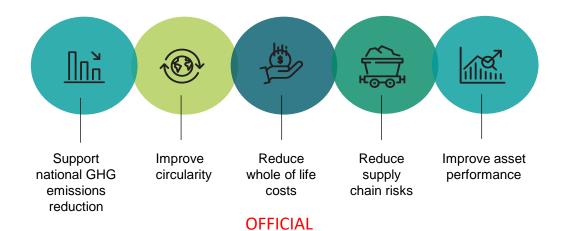
Abbreviations

Term	Definition	Term	Definition
AS	Australian Standard	MRWA	Melbourne Retail Water Agencies
BW	Barwon Water	NEW	North East Water
CEC	Chemicals of Emerging Concern	OPC ¹	Ordinary Portland Cement
DEECA	Department of Energy, Environment and Climate Action	PFA	Pulverised Fuel Ash (i.e. Fly ash)
EPD	Environmental Product Declaration	RCA	Recycled Concrete Aggregate
GBCA	Green Building Council of Australia	SCM	Supplementary Cementitious Materials
GGBS	Ground Granulated Blast-furnace Slag	VPV	Volume of Permeable Voids
GHG	Greenhouse gas	VR	VicRoads
GP ¹	General Purpose cement (in Australia typically contains 92.5% Ordinary Portland Cement blended with 7.5% ground limestone)	WSAA	Water Services Association of Australia
IPCC	Intergovernmental Panel on Climate Change	YVW	Yarra Valley Water
MECLA	Materials and Embodied Carbon Leaders Alliance		

Note: 1 – for the purpose of simplicity wherever the term 'cement' is used it can be taken as referring to either GP cement or ordinary Portland cement as the carbon differential is minimal.

Introduction

Delivering a better world


Introduction

AECOM has been engaged by Yarra Valley Water (YVW), North East Water (NEW) and Barwon Water (BW) to develop a **Low Carbon Concrete Mix Selection Tool** to collate one source of low carbon concrete mix information for YVW, NEW and BW to select concrete mixes for their projects.

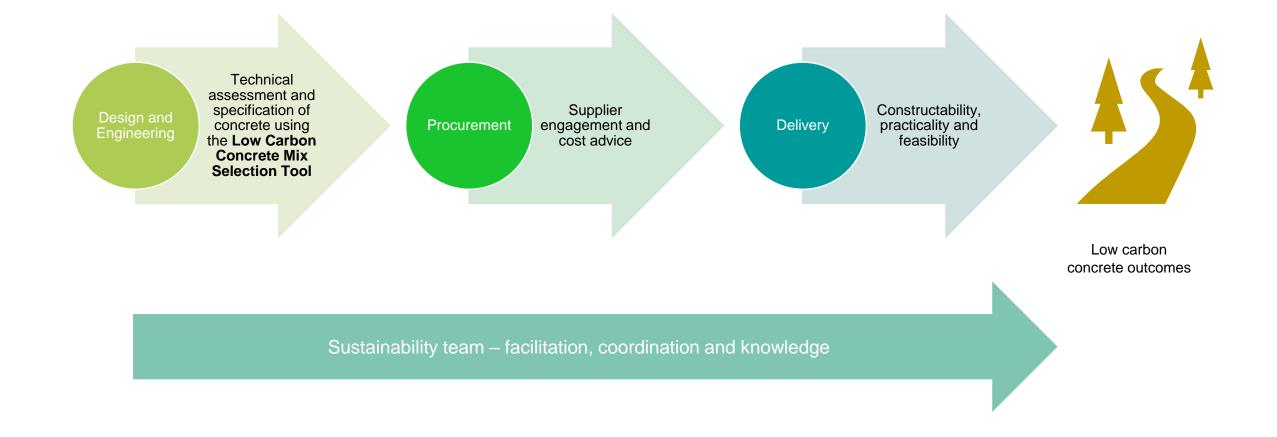
This **Practical Implementation Guide** outlines how to effectively use the Tool to select low carbon concrete mixes and should be read in conjunction with the **Low Carbon Concrete Mix Selection Tool**.

Background

- As human-induced climate change worsens, it is imperative that strong and sustained action is taken to limit its future impacts (IPCC, 2022).
- The Victorian water sector has set world-leading targets to cut scope 1 and 2 emissions to achieve net zero by 2035 (DEECA, 2024), demonstrating leadership in reducing emissions faster than many other sectors.
- With changes to scope 3 emissions reporting requirements expected imminently, water corporations will need to understand, quantify and manage their scope 3 emissions in order to respond to the evolving regulatory and reporting environment, as well as stakeholder expectations.
- Given the significance of Ordinary Portland cement's (OPC) contribution to scope 3 emissions, estimated to be 8% globally, it is prudent that the water sector continues its leadership in emissions reduction and consider the benefits of adopting of low carbon concrete to:

Introduction

<u>Purpose</u>


- By creating one source of information to select low carbon concrete mixes for projects, the purpose of the Low Carbon Concrete Mix Selection Tool is to support YVW, NEW and BW's ambition to reduce scope 3 carbon emissions associated with concrete usage (herein referred to as concrete emissions) on their projects and in the broader supply chain.
- The Tool is a starting point and a small, but key cog in the decarbonisation of infrastructure asset which will need to be refined by the individual water corporation to be relevant to local suppliers and the types of assets constructed. The Tool will need to be modified by organisations to meet their specific and changing needs.
- The Tool is based on the minimisation of General Purpose (GP) cement in concrete mixes, but as more suppliers produce Environmental Product Declarations (EPD), the ability to transition to kgs of CO₂ per m³ will provide a more useful measurement metric for concrete emissions.

Audience

- Experience and/or knowledge of concrete mixes is required by personnel operating the Tool. This skillset may come from personnel with materials engineering and/or sustainability backgrounds.
- The roles and responsibilities of the personnel required to operate/adapt the parameters in the Tool need to be determined beforehand by the individual water corporation.
- Collaboration between Designers and Engineers, Sustainability, Procurement and Delivery at a minimum is necessary to use the Tool to achieve the best outcomes, as illustrated on slide 9.

Multi-disciplinary approach to achieve low carbon concrete outcomes

OFFICIAL

Tool overview

Delivering a better world

Tool overview

The Tool is focused on concrete elements and is aligned to the Melbourne Retail Water Agencies (MRWA) database and Water Services Association of Australia (WSAA) standards. The Tool allows for the collation of information on appropriate concrete mixes in one place and prompts the user to consider higher supplementary cementitious materials (SCM)% mixes for water utility assets.

It includes the following:

- Asset type and element
- Typical design life
- Typical concrete grades (MPa)
- Minimum and maximum cement content (kg/m³)
- Exposure classification (e.g. as defined in AS 3600 (50-year design life), AS 3735 (80-year design life) or AS 5100.5 (100-year design life)
- Durability requirements (so assets meet the specified design life in the defined Exposure classification)
- SCM% currently available in the market
- Aggregate replacements available

				MINIMUM CEMENT				CONCRETE	COVER (MM)
ASSET TYPE	ELEMENT	DESIGN LIFE (YRS)	CONCRETE GRADE (MPa)		WSAA, PROJECT OR ORGANISATION REQUIREMENTS / STANDARDS	UPPER LIMIT OF CEMENT (kg/m3)	EXPOSURE CONDITIONS (AS5100.5, AS3600, AS3735 or equivalent)	MINIMUM DURABILITY COVER (mm)	ADDITIONAL CONSTRUCTION COVER IF CAST AGAINST GROUND OR BLINDING/DPM (mm)
В	С	D	E	F	G	Н	1	J	K
Asset type break	nwn	Required design life of element	Strongth grade	Concrete requirements to organisation or equivalent	, ,	Max cement if	Explore classification to Australian Standards or equivalent	Required cover to re	einforcement

		Coa	arse Aggregate (`	Y/N)		Fine Aggreg	ate (Y/N)		Wate	r (Y/N)
	SCM%	Virgin	Crushed	Plastic	Virgin Aggregate	Manufactured	Glass Fines	Recycled washed Sand	Potoblo Wator	Recvcled Water
		Aggregate	Concrete	Aggregate	virgin Aggregate	Sand	Glass Filles	Recycleu washeu Jahu	FOLADIE WALEI	Recycleu Water
) [setting a min.									
0	r approx. SCM	Aggregates prop	bosed and their %	or amount					Water to be used	
1	alue									

	Poten	tial Suppliers and	their products			Trial		Curing and	Recommended	Carbon Footp	rint
Hanson	Boral	Holcim	Other	Other	Is it recyclable at Opportunity?		Potential Concrete Mixes and Details	Workability (Required changes to	text for Drawing	Carbon footprint outcome	EPDs
V	w	Х	Y	Z	AA	AB	AC	AD	AE	(comment or value)	(link)
Potential mixes fr	om suppliers th	at meet requireme	nts.		opportunity to recycle the elements	opportunity to do a	what's been used and	Commentary on	drawings to ensure correct mixes	expected or final outcome carbon	Hyperlink to copy of EPD if aquired.

Delivering a better world

Input parameters

Input parameters

The following parameters need to be adapted to each water corporation requirements:

- **Project specifications:** Input or review tool (**Concrete Element Summary tab** refer to Figure 2) for project details such as type of structure (e.g., pipe, tank, pit, slab, foundation, bund, foot path), and exposure conditions (e.g., environmental factors).
- Materials data: Review tool for, or gather data on, available concrete mixes including supplementary cementitious materials (e.g., fly ash, ground granular blast furnace slag, silica fume), aggregates, and admixtures from suppliers. Input mix information from suppliers in the Mix Details tab refer to Figure 3.
- **Sustainability requirements:** Understand project sustainability requirements and how that may be achieved with concrete reduction.

to Save 📴 🗑 🕫 🖓 🗸 🖗 👘 👘 Low Carbon Concrete Mix Specification Tool, Draft VI. Oxfor 🕫 + Saved 🛩 🗾 🔎 Searc	AutoSave 🤇		9-0-	8	Low Ca	rbori, Concrete Mic	Specification Tool_Dra	ft V2.0xlar 4	× Saved ❤	2	Search			Aut	oSaver On 🔍	昭 12-17-	(F)	Low Carbon I	Concrete Mis 5	pecification Tool	Draft V1.0.etc	R ^R • Saved	**).	9 Search			
Home Insert Page Layout Formulas Data Review View Automate Help BLUEBEAM ProjectWise	File Ho	me Inse	ert Page La	yout	Formulas	Data Revi	ew View Aut	omate H	elp BLUEBE	AM Project	tWise PDF-X	Change		File	Home	Insert Page	Layout Fo	rmulas Da	ata Revier	r View	Automate	Help E	LUEBEAM	ProjectWise	PDF-XChan	ge	
↓ Cot ▲ cal -11 - K K Ξ S - % > 5 - % > 1 .		Paste dis	Copy 👻 Format Painter	Calibri B I	<u>⊔</u> ~ ⊞ Font	- 11 - A^ A' A'		・ 静Wn 王 聞 Me	sp Text rge & Center 👻	General \$ - %	7 100 -20 Fi		ormat as Cell Table - Styles +	Too ANZ A	Is Paste	X Cut Copy ~ Format Painte Dipboard	Arial B I U	- 9 [- ⊞ - Font	• A* A*		Alignment	Wrap Text Merge & Cer	ter - S	ral % 9 %	co co formatt	ional Format ing ~ Table Stytes	
A V X I *	S10	-1.1	×											F13		X V	6 Hanson										
												les les								G	1 240		1		1 12		
Low Carbon Concrete Mix Selection Tool - Introduction	H .		c										2 . 2 .	1		available mb		E.		0				K		- 01	
Low Carbon Concrete Witk Selection Tool Practical Implementation Guide Presentation for steps for use.	1 Concre	te Mixes per	r Element											2		from suppliers		are. Enter mi	x design deta	ils in green ar	d yellow he	aded cells.					
	a Addek	oments to the l	list and fill in requirer	ents, Use to	a list what mixes	may be useful for diff	vena, moveer on	us on replacing P	Portland Cemera (OF	PCI with Supplement	vary Cementitious Ma E COVER (MM)	zerials (SCM)s	Cours Appro	3	Project Deta	ila - where mix h	as been used if	applicable	Concrete f	Aix Details	22		DTP / MRV/A		1		Cementitio
Ownership and accountability that and repeating the internet apple to that the first and the internet high added and a repeating The fair installant his set of the prevalence in the internet internet high added a fair of the separation. The second added by a second repeating of the second added and added after this separation are adopted figures, heready in prevalence and the byte second repeating of the second added and added after this separation are adopted figures. Installely, the second added byte second repeating of the second added and added after this separation are adopted figures.			ELEMENT	UPE (VRS)	CONCRETE GRADE (MPs)	CONTENT AL PER PROJECT IPECTICATIONE, VR610 or VEAA (lg/sd) where	URGANIZATION INCOMPLETED TANDARDS	CEMENT (Lq2=3)	(A35100.5, A11000, A53135 or	MUNIMUM DUNABLITT COVER (==)	CONSTRUCTION COVER IF CAST AGAINST GROOM	10 10 10 1	Wargin angergen M C N C	4 5 (ibe		de Project Referen	ce Elemente • (element deta	Link to copy mix design	of Concrete Mi Supplier	Mar Dezign No	Company Me No	Concrete Ty Description		Strength Grad (MPa @ 20d)		Ми Туре	CenerxOPC (nolminecal addition) (kigim3)
														6	example: MixA	example: Project B	oxample: Slab - Precas		Boral	4502	VRA40AUU6	(Polyrok)	ARRB Reference Number: PR 000395-C12	40MPa	nřa	SOX GGBF S	5lag 200
	Tumpers	NY LIN AL	y kin gerbianit netete (og blinding, nporsey protoction, ware ; crane pode, hy down ske, otc	Just for construction	Ar required, min 20 MPs	Pack as low to population to population of a soft mouth to confrom to VIDER and brace below on strong achieved via triale.	VEAPD-351	тес	1 67A	NIA	N/A	ng to 10%	20%	7			_		Bonal	4502	VFIA40AUUT	VFI400140 (60/30min/) (Polyrok)	Reference Number PR 000395-C12	40MP.a	nie	50% GGBF 1	3.+g 200
Input tool ower and combutors to allow to review and oversigit of process and outcomes.														8			PRECAST		Hanson		ZDT341855	VFH50/50	2DT341855 Results linter C1143391 pd	n) SOMPa	12 (14), 33 5 (34) 55 (74), 79,58 8 (284)	DTP	225
Test sear Organization position Lut retire one of the			ADEDUICEDATH		38 can bullower	VIDDASE			A or B1 (check local		-						PRECAST		Henson		2D73418E5	V9450/50	2DT3418E5 Resultx Onter CTM3932 pc	n) SOMPa	16.511d), 34 (3d) 46 (7d), 50.58 5 (28d)		225
Text contributory Organizations List review and the second s	т. 10,192	(50	u9)	20	depending on urs			330kg/m3	osv4Sion/)	40	rit (und als 50)	ap-to fi0%	203 or				PRECAST		Hanson		201346595	VR450/50	2DT3465S5 Results (Inter CTM3933.pc	n) 50MPa	9.9(1d), 29.5(3) 51.5(7d), 73.6 7		225
	Taract B	eosukas Te	rest Restraiet Blooks		min 20 Mps	N2A	VTA PS-351 minimum concert respired from respired strength filemed Type Concests	N/6	A or B1 (sheddood coorddood)					10			PRECAST	-	Hanson		2DT3465E5	VR450150	2013465E5 Results (Inter	n) SOMPa	14.5(1d), 33.5 (3d), 48.5(7d),		225
Too Tool is present on another balance and is aligned to the Multiplement Restal Valuer Appendix (MRVA) databases and Valuer Teuristic Accordations of Automatic (VERAA) strandends.	10000		watt Paulo	100	50	450hglie3 for 50MPulse		450kg1a3	Dis D2 (check lace)	40	NA.	10 TO 505		11	-						_		CTM3334.pd	<u> </u>	62.5 h 57 (28d)	-	
The Tool allows for the collation of information on appropriate concrete minus is one photo and prompts the near to consider higher supplementary connections when the (ICMR) minus for water exiling source.	9		n an Fallin		~	should be cholcoped			(secifices los			-											Nukiple Plan V5552FVRT				
Input parameters Project qualifications had (Concrete Element Seminary inh - nature Pyres2) for project details and project details (e.g., pip., text, pil), and agains conflice (e.g., pip., text, pil).	Di una pi	ispitek Pip	н	100	22	VR300/32 (but phodid challesgod)		230kg/w3	B16 B2 (check local zoll conditions)	50 (VII standard drawege	r) N/A	age to 80%							Holoim	3871	VS552FVRT	SS5 20MM VR470 1505 HSCM CON	VRChart G3		45.6.44 (3d), 59 58.5 (6d), 69.8.7 (274)	8	221
Marchisk darfer. Privit nof for oppland dar en vinalde constructives des and page page entry and visit service darfer and being apply entry of the service and the service of the service	II Benursp	k Djertum - Din Vis	werage Storage Tank - div	100			Special Type Concests							12		-	-				ZD722185C	VFI400/40	FA(updated 5.2.21).pdf VR400-40 ZDT22185C	dimp.	7.5(1d), 25(3d), 348 37.5(7d), 4	2	+
Using the Tool Using project productions, note Caracter Classes Tables year to ender and the caternia ison type / discorrespind / note project as isolated in it:	12 Every	a Dyrtun Dir	werege Donoge Task - ab	100			Epecial Type Concruts							13					Districon		201221890	01400140	(Test Reports) pdf VFI450-50	40773	(14d), 55 (21d), 5 6, 58 5 (28d) 9 (1d), 28 5 (3d),	3	
accretele: Here any set upper a addet to be an or a couper to being an possible mark regenerating possible of boots choose to be regene. and accelerate Add to save the and leads regelerated for energies band on stracteds.	an Derversp	e Djotom - Ben	warege Diversige - Piper	100	Ao Pur A0/821 4058	NA	W2A P0-200 W2A 80	NA	N/A		NA	>895				1			Hanson	510396	20132185C	VFH50/50	VPI450-50 2DT32185C	SOMPa	38.5 6 40.5 (7d) 49.5 (14d), 58 (21d), 57.5 6 58		
ANT TYPE ALLOW STRATEGY (M) TO ALL (M) TO AL	Charter Munet		alvenues Relea for Noe- crains Applications - sally Domarups	100	50 (VEAPE-323, VEAPE-333)	NA	WEA PD-020, WEA PO-038 Min concert content a 450 bijin3 (could be challwaped to be tend for bieder content)			Preciam 40 internelly, 25 extenselly, 20 or jointe	, NA			14					Hanson	0.00000	201241015	VR4000Hgr	(Test Reports).pdf	17555714	(214), 57 5 6 58 (284), 718 69 5 (564), 70 (914)		
A Construction of the Cons		ance holed No.	nicol Bures for Concrete Notemas Relative In Process Application Scotty Science	100	50 (wIAP5-303, Type IR)	NEA	WSA P0-020 Mis concet context + 450 kg/m5 (could be challenged to be tental (or biodor context)			Procests 40 internally, 25 sutemaily, 20 or joints	NA			15 17 18 19													=
0 in the since week the requirements of the project (nerticality, concrete, typ.)?) for the since week the requirements.									STRUCTURE OF					20	-		_	_	-	_			-	-		-	+
(V8 Nock-significant cest implications to the priority Introduction Concrete Element Summary Mix Details (+)	Deninger	introd	luction Cond	rete Elem		astrophysics States		#10bala3	Bits B2 (check local	20mm curt against	N/A	set		22	· In	roduction 0	Concrete Elemen	nt Summary	Mix Detai	ls 🕀				1			_

OFFICIAL

Figure 1: Introduction tab

Figure 2: Concrete Element Summary tab

Figure 3: Mix Details tab

Using the Tool

Delivering a better world

Using the Tool

- 1. Using project specification, review Concrete Element Summary tab to understand if the concrete asset type / elements required for the project are included in it:
 - a) If included: Review entry and update or include a new line if changes to Design Life (column D), WSAA requirements (column G), Exposure Classification (column I) are required.
 - b) If not included: Add a new line and include requirements for concrete based on standards.

				MINIMUM CEMENT				CONCRETE	COVER (MM)
ASSET TYPE	ELEMENT	DESIGN LIFE (YRS)	CONCRETE GRADE (MPa)			UPPER LIMIT OF CEMENT (kg/m3)	EXPOSURE CONDITIONS (AS5100.5, AS3600, AS3735 or equivalent)	MINIMUM DURABILITY COVER (mm)	ADDITIONAL CONSTRUCTION COVER IF CAST AGAINST GROUND OR BLINDING/DPM (mm)
В	С	D	E	F	G	Н		J	K

- 2. Review concrete information in **Concrete Element Summary tab** for elements and determine if the following are applicable:
 - a) Do the mixes **meet the requirements** of the project (workability, sustainability, early age strength, concrete type)?
 - b) Are the mixes **available**?
 - c) Will there be **significant cost implications** to the project and how do these correlate to the cost of offsets? Refer to Scottish Water case study on slide 23.
- 3. Once the requirements of steps 1 & 2 are satisfied, move forward with design, procurement and construction following organisational processes.

Using the Tool

- 4. If the Tool does not include the relevant mix information relevant for the project:
 - a) Contact concrete suppliers for additional mix information for project.
 - b) Add new mixes to Mix Details tab to assess cement and/or carbon reduction and compare properties.
 - i. Include information from concrete suppliers on mix specifications (Project Details *columns B-E*; Concrete Mix Details *columns F-M*; Cementitious Material *columns N-Y*; Aggregates *columns Z-AG*; Water to Cement ratio *columns AH-AI*); Performance Test Results *columns AS-BA*).
 - ii. The Tool will calculate the **Cement Reduction %** from a GBCA baseline (*columns BB-BD*) once step i. is complete.
 - iii. The Tool can be used to **compare mixes on performance properties** such as drying shrinkage, slump, VPV and admixtures used (*columns AS-BA and AJ-AR*). It can also compare **carbon footprint** information collected (*columns BE-BF*).
 - iv. Record any approval and compliance records for mixes to specifications or authorities (columns BG-BK).
- 5. Add any information collected and used into the **Concrete Element Summary tab** including:
 - a) Mix details including aggregates, SCM% and admixtures.
 - b) Availability, workability and process notes (from project team and contractors).
 - c) Drawing notes used.
 - d) Investigated trial mixes if relevant.

Implementing the Tool

The Low Carbon Concrete Mix Selection Tool is only part of the process to reduce Ordinary Portland Cement (OPC) use.

For the benefits of the work to reduce OPC to be realised, concrete should be tracked through the design, procurement and construction process.

A process developed for a transport project and adapted for the water industry to decide on a concrete mix and navigate the approvals and compliance process is represented in the follow slides.

Key steps to set and deliver a carbon reduction of concrete on projects

- 1. Review the project's concrete asset elements including type i.e., insitu, precast, shotcrete to estimate the likely **GP cement reduction targets** (calculated against cement content defined by the Green Building Council of Australia (GBCA) for each concrete grade refer to Slide 21):
 - a. If a high percentage of the concrete will be cast insitu, set a GP minimum cement reduction target of around 40%.
 - b. If it is mostly precast, set a GP minimum cement reduction target of around 30% as a good starting target.
- 2. Once the overall cement reduction target has been determined for the project, the simplest but key step is to add that target as a **minimum requirement in the concrete notes** on each tender drawing package.
- 3. The Low Carbon Concrete Mix Selection Tool needs to be actively engaged with by the design team (structural and durability people) to identify potential concrete mixes that both meet the technical specification requirements and ensure that the overall cement reduction target will be met. If there is a lack of suitable mixes currently available, the design team and project manager should engage with the delivery partners/contractors and their concrete suppliers to identify what low carbon mixes can be provided if project commitments are made.
- 4. Require that **delivery partners/contractors restrict the concrete mixes available for selection** on their ordering/purchasing platform for their site engineers/PMs to those that meet the cement reduction targets.
- 5. Require **delivery partners/contractors to provide weekly updates** from their accounts system of concrete invoices paid with mix code and quantity supplied to allow confirmation of concrete used throughout the project to be verified.

An integrated, project wide approach to drive GP cement reduction

Calculate

Planning phase

Review Organisation and Industry technical requirements and collate Project targets for:

 Performance including structural and minimum durability requirements
 Sustainability

requirements including:

- GHG emission reductions
- % cement reduction
- max % recycled materials content

Identify location of project with respect to nearest concrete suppliers / concrete batching plants, and recycled material suppliers where available.

Concept design

Review concept design to estimate concrete usage across project. Collate data required for cement use calculations including asset locations, type, elements, min structural & durability requirements, exposure classification, dimensions of elements.

Update design drawings notes and specifications to include sustainability cement reduction targets for insitu and precast elements.

Where concrete mixes have been specified, review using **Mix Design Tool** or similar.

Request new mix

from Supplier

GBCA carbon reduction baseline First pass Concrete mix review (Mix Design Tool)

Detailed design

Refine design of concrete structure / element structural, durability & constructability requirements i.e., high early strength, self-compacting concrete, abrasion and chemical resistance.

Nominate low carbon concrete and recycled material content in design package report/s and drawing notes. Where a low carbon concrete mix has been assessed by the **Mix Design Tool** and meets performance and constructability requirements, include concrete mix ID/type on design documentation.

Procurement / Delivery / Quality

Procurement / Quality to work with Design and Delivery to manage reviewed / approved/ used compliant low carbon concrete mixes and upload to **Master Concrete Mix Database.**

Early engagement of concrete suppliers to gain understanding of low carbon concrete mix availability and Project concrete mix approval requirements wrt low carbon concrete options and recycled material content

> Concrete mix approved and available to order once entered into the procurement system

Cement Reduction 8 Embodied Carbon Reduction Tracking Dashboard

...

Site trials and testing may be considered

Concrete mix reviewed for Project targets for structural, durability and constructability requirements as well as compliance with Project cement reduction and recycled material requirements, and WSAA / Organisation performance requirements.

YES

Is concrete

mix

compliant?

NO

Cement Reduction & Embodied Carbon

🔶 aecom.com

Key steps to set and deliver a carbon reduction of concrete on projects

6. Project team to maintain a 'live' dashboard of concrete used and overall cement reduction achieved and display that as an average so the project team can have confidence that the target will be met. This will allow decisions to be made with confidence to accept a mix that doesn't meet the target as long as it doesn't shift the overall project average below that key mark (see example of a project dashboard on next slide). Noting that the delivery partners/contractor will need to raise a Request for Information (RFI) if they intend to/have used/order a mix that doesn't meet the project minimum target – hence the importance of having that requirement on the drawings.

Location		SupplierNa	me	Strength		71	244 n	-2	19	330.	9/1+	11	509	1.89	
All	~	All	~	All	~	2010									2
Cement Reduction	n by Mix D	esign				Total	Cement U:	sed	Total	Portland I	Used (t)	Total	Portland	d Reductio	on
trength	Pa 🔵 25MPa 😑 3	IZMPa @40MPa @	SOMPa @ 60MPa	Cement Rec	luction by Mor	nth	Ave	erage Ce	ment Re	duction	by Stree	ngth Class	s		
VRA40AURPV		51.65%		Sep-2021	74% 36%		1								
VS502VR18	41.6			Aug-2021	.31%		1.5					-			
VPROFM018		50.89%		Jul-2021 3	45%										
VHP506UVP5		59.64%		a construction of the second	54%										
V5502FVF3	41.0				99							3420772		and the	
V5402VR18	36.939				87%			43.02%	42.67%	32.98%	37.89	41.48%	47,50%	15.91%	
VS402FVR	36.939	6		Mar-2021 1	23%			15MPa	20MPa	25MPa	32MPa	40MPa	50MPa	60MP	a.
VE322ENV		7.84%		Total Ceme	nt N	Aix Design	Strength	Quantity	"Total	50	M	Portland C	ement	GBCA	-7
VS501FVR1	361959	er (*		Reduction				(m3)	Portland		200	(kg/m3)		Baseline	
VPROFM027		48.70%			V	HPSOGUVPS	50MPa	5.935.30	1.31	7.636.60	59.64%		240.00	550	-
V\$401FVR1	36.939	6		36.00%	V	RASOAUVTS	50MPa	1,625.40	36	0.838.80	59.64%		240.00	550	
VS401MVRF	26.84%				V	SSOTVMWC	50MPa	317.70	8	0,521.07	53.92%		274.00	550	1
V5502FVR1	39.45	56				RA40AURPV	40MPa	11,143.40		0,758.35	51.65%		230.00	440	
VRA50AUVTS		59,64%		101		E202ENV	20MPa	1,222.90	16	7,415.03	51.11%		148.00	280	1
0%	209	6 4	10% 64	0% 43.8	34%	otal		71.243.60	19.330	0,943.23	43.84%				
						6									1

Figure 4: Concrete mix data tracking and project cement reduction monitoring

Sample calculation of cement reduction using GBCA concrete mix baseline

Base Reference Mixes

The GBCA cement content listed in Table 1 below are generally used as the base/reference mixes across a range of compressive strengths and assume that the entire cement content stated comprises OPC. i.e. it does not include any Supplementary Cementitious Materials or the inert mineral content that is in typically in Australian GP and GB cements.

Table 1: GBCA Cement Contents in Base/Reference Mixes

Grade (MPa)	Cement Content (kg/m ³)
20	280
25	310
32	360
40	440
50	550
55	550
60	550
65	550
80	610

For each concrete mix the OPC reduction will be calculated by taking the weight per m³ of the GP or GB cement component and removing the added minor content – the concrete supplier to confirm what that mineral content is in their designated mixes.

Then subtract that figure from the GBCA cement content for the grade of concrete and divide by the same GBCA figure to get the reduction and convert to a percentage.

As an example – if a 40 MPa concrete is required, and the structure/element is in a B1 exposure classification then accepting that to align with B80 (i.e., TfNSW concrete specification*), the mix must have a minimum of 240 kg/m³ of GP cement and 80 kg/m³ of fly ash is added to achieve the total minimum binder content of 320 kg/m³ then such a mix would achieve a cement reduction of ~45% if all the GP was OPC:

GBCA cement content 440 kg/m³ \rightarrow (440-240) / 440 \rightarrow 200/440 =0.455 \rightarrow 45.5%

If the GP cement contains 7 % inert mineral, then the OPC content of that 240 kg/m³ is 223 kg/m³ and therefore the full OPC reduction for that mix is 49.3%.

*Note requirements for minimum cement or total cementitious content vary slightly state to state, though in Victoria DTP Section 610 Structural Concrete is in line with requirements of AS 5100.5.

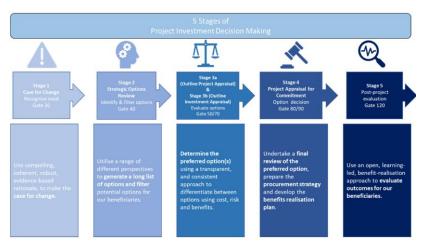
OFFICIAL

Case Studies

- 1. Scottish Water Project Investment Appraisal Framework
- 2. Scottish Water Designing out Concrete
- 3. Biochar: the circular economy opportunity for the water sector
- 4. Geopolymer trial on retaining walls in transport sector
- 5. Recycled concrete aggregate proving field trials in transport sector

Scottish Water – Project Investment Appraisal Framework

Scottish Water are aspiring to be a leading organisation, recognised for excellence in how they appraise project investment for the benefit of customers, communities and the environment. Within Scottish Water's **Project Investment Appraisal Framework**, there is a **decarbonisation cost-benefit analysis tool** which compares the upfront cost of investing in reducing the cost of the carbon during the capital project versus the future cost to the business of purchasing carbon offsets. This allows them to plan, manage and prioritise challenges and ensure customers' money is invested in a way that maximises long-term value.


Project Investment Appraisal is the process of assessing the costs (including carbon), benefits (social, economic and environmental) and risks of alternative ways to meet objectives, whether that be Scottish Water objectives or wider objectives. The tools allows for several factors to be considered, including:

- Initial investment costs
- Long-term savings
- Market and financial risks and benefits (government incentives and subsidies)
- Energy price volatility
- Fluctuations in offset costs
- Regulatory risks
- Environmental impacts
- Customer expectations

The tool has been used to justify to the regulator customer price increases being passed on to customers now as the cost of construction does increase when low carbon materials are used, but with the pay-off that future fees and charges will not escalate at a greater rate because of future offset costs to achieve net zero emissions by 2040 being factored into the analysis.

This approach to cost-benefit analyses should be considered by Victorian water corporations so that they can start to predict what impact future carbon offset costs will have on their current financial position. This does require the establishing a baseline of carbon created by the business at both the build phase and the throughout operations so that the relevant financial metrics can be deployed in the Value Review tool with confidence by the Executive.

OFFICIAL

Scottish Water – Designing out concrete

- Scottish Water has set a **net zero target to 2040** and produced a <u>Net Zero Emissions Routemap</u> to outline the pathway to achieving this target (refer to Figure 1).
- The Routemap found that civil engineering investments in 2019/20 accounted for 60% of carbon emissions. Concrete accounts for 18% + rebar = 25% of total emissions.
- Opportunity of up to 10-12% reduction of concrete emissions through alternative concrete adoption.

Key actions include:

- Designing out concrete using optioneering tool. Designers need to rationalise use of concrete e.g., reducing kiosk slab thickness will reduce 33% of concrete required. Modularisation of kiosk design means that the metal frame now sits on compacted Type 1 fill instead of concrete slab (refer to Figure 2).
- Historically, projects were delivered using CEM I (100% OPC) concrete because this was the cheapest option. Scottish Water has now **banned the use of CEM I concrete on its sites** identifying it as a 'non-conformance' if a contractor inadvertently uses it.
- Developed a low carbon concrete matrix to select concrete mixes.
- Revised **concrete supply framework** to only price CEM II and CEM III (concretes which replace cement with GGBS and PFA).
- **Commenced trials on low carbon blended mixes** (EcoPact/Ventura), Carbon Cure; looking to trial Calcined Clays, Cemcor, Hoffman Green etc.

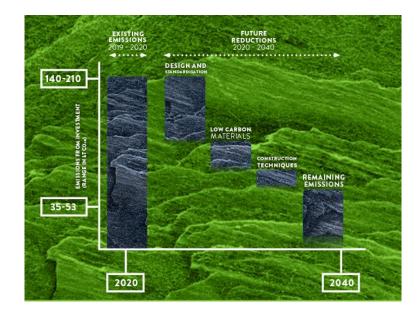


Figure 1: Pathway to net zero

Kiosk Slabs	Vol Conc (m3)	Reduction	1
Traditional (3x3) 300 deep	2.7	baseline	
Traditional (3x3) 200mm deep	1.8	33%	
Strip footing (2nr [3x0.3x0.3])	0.54	80%	
Pad footings (4nr [0.3x0.3x0.3])	0.108	96%	
Compacted Type 1	0.0	100%	

Figure 2: Design optioneering to reduce concrete

Biochar: the circular economy opportunity for the water sector

Biochar is the product of biomass (food and garden waste or biosolids) turned into a carbon rich charcoal type substance by the process of pyrolysis (oxygen free incineration). It is traditionally used to improve soil quality, but its other uses include cement replacement in concrete.

The challenges of using biomass (quality and quantity of product, limited market value) are outweighed by the opportunities, namely:

- Improved sustainability outcomes through circular economy principles to assist decarbonisation journey
- Possible enhanced revenue diversification opportunity if biochar utilisation is feasible
- Possible insulation from lack of market supply of recycled / low carbon content for construction materials

North East Water are kicking off biochar trials in 2024.

- Phase 1 trials consist of testing a range of feedstocks (biosolids, FOGO and wood products) through a biochar pilot plant in Melbourne.
- The trial will identify the quality and quantity of feedstocks and Chemicals of Emerging Concern (CEC) removal %.
- Phase 1 will build the business case to progress to **Phase 2**, which will include a processing unit on a NEW site running larger volumes of the desired mix.
- **Phase 3** will build the business case for a larger, 20,000 to 60,000 tonne per year biochar plant.
- The business case includes signing contracts with organisations that would supply different wastes outside of water corporations.
- NEW plans to use the products produced from Phase 1 and 2 for cement trials. Opportunities exist with locally located concrete suppliers for mutually beneficial circular economy outcomes.

Yarra Valley Water have been exploring biochar in concrete together with RMIT. Sourcing adequate amounts of biochar of the right quality has been a limiting factor. Testing at lab scale is achievable but getting enough for field trials and applications at large is more challenging.

Barwon Water have been researching the production and application of biochar in batteries (Biochar 2 Batteries) with RMIT, Deakin University and others. Their Regional RON is expected to produce 5000 tonnes of biochar per year from November 2026.

Geopolymer trial on retaining walls in transport sector

ecologiQ performed site inspections (visual, sampling, on-site testing and laboratory testing) in 2023 on two retaining walls that were built in Melbourne in 2013 using geopolymer concrete manufactured from blast furnace slag (100% Portland cement replacement with approx. 90% GGBS and 10% fly ash).

The main objective of the investigation was to assess the long-term performance of the geopolymer exposed to field conditions. The retaining walls are located at M80 WRR (inbound), Sunshine North and Dudley St. Bridge, West Melbourne.

The results of the investigation were as follows:

- The visual inspection of both retaining walls revealed no major defects or deterioration. Some cracking was identified, and this has been assessed to be related to shrinkage cracking in the early ages of the structure's life. The maximum crack width measured during the inspection of the panels was 0.35 mm and the overall cracking was typically ranging between 0.15 and 0.35 mm.
- The mixes used on both walls were designed to meet the requirements of VR400/40 as per VR610. The compressive strength results confirmed that the mixes are above 40 MPa, providing good evidence that the geopolymer was durable and did not lose strength over time.
- Some superficial fretting was observed in both retaining walls near the edge of the panel interface. Testing hasn't been able to conclusively identify the cause of this fretting. It is understood that some early age efflorescence might have occurred in the panels and may have contributed to this fretting. No efflorescence was present during this survey. The observed fretting was localised in nature and superficial in depth and largely had a local aesthetic impact.
- Except from the superficial fretting, no durability issue was identified on the tested structures which would impact on the ability of the structure to achieve its design life for the proposed function, providing evidence of the long-term performance of slag based geopolymer mixes under field conditions.

Example of a proving field trial undertaken on a project - Recycled concrete aggregate

OFFICIAL

Resources and References

Delivering a better world

Resources and References

Resources

- 1. WSAA: Guide to Scope 3 Emissions Management for the Water Sector
- 2. MECLA: A Guide to Low Carbon Concrete in Australia
- 3. <u>ecologiQ ecologiQ resources Victoria's Big Build</u>
- 4. Victorian Big Build Recycled First Policy
- 5. <u>Scottish Water- Net Zero Emissions Routemap</u>
- 6. Institution of Structural Engineers UK <u>Concrete technology tracker</u>
- 7. CEMBUREAU's Map of Innovation Projects

References

Department of Energy, Environment, and Climate Action (DEECA), (2024). A net-zero emissions water sector by 2035. Retrieved June 03, 2024, from <u>https://www.water.vic.gov.au/our-programs/climate-change-and-victorias-water-sector/greenhouse-gas-emissions-from-the-water-sector/a-net-zero-emissions-water-sector</u>

Intergovernmental Panel on Climate Change (IPCC), (2022). Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Retrieved February 20, 2024, from https://report.ipcc.ch/ar6/wg2/IPCC_AR6_WGII_FullReport.pdf

Thank you.

For further information, please contact:

Miles Dacre - Advanced Materials Segment Leader

Miles.Dacre@aecom.com

Delivering a better world

AECOM Delivering a better world